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Abstract

Fourier synthesized ray solutions are an effective way to
model mountain waves, producing fast high-resolution three-
dimensional forecasts. Here this method is extended to in-
clude tunneling effects, i.e. the penetration of mountain waves
through an evenescent region bounded above and below by turn-
ing points. Tunneling effects are especially important near wind
jets. To overcome the divergence of ray theory at the turning
points, without resorting to special functions, the ray solution
is linearly interpolated across the turning point region. Acom-
parison of the ray solution with a mesoscale model indicatesthe
importance of including a wind curvature term in the ray analy-
sis.

Introduction

Mountain waves are internal gravity waves generated by strati-
fied flow over topography. These waves can grow to large am-
plitudes as they propagate upward to great heights in the atmo-
sphere, resulting in strong vertical accelerations and wavebreak-
ing. Forecasting mountain waves is thus important for aviation
safety and a host of scientific issues, including mixing rates for
stratospheric ozone.

Here we use Fourier synthesized ray solutions to forecast moun-
tain waves in a height dependent background. Ray solu-
tions are first obtained in a Fourier transform domain, where
the wave propagation is governed by one-dimensional height-
dependent ray equations. The result is then converted to a three-
dimensional spatial solution by inverse Fourier transform

Previous work with this method (Broutman et al. 2003, Ecker-
mann et al. 2006) treated trapped waves with an Airy function
analysis. This is appropriate for an isolated turning point, and
it predicts the complete reflection of the wave from the turning
point. If there are two nearby turning points, however, up tohalf
of the wave’s momentum flux can leak through the evanescent
region between the two turning points and continue upward with
the transmitted wave. This process is especially importantnear
wind jets. It is analagous to tunneling in quantum mechanics
(Brown and Sutherland 2007).

Here we examine two turning-point effects. We introduce a
modified ray solution, which is linearly interpolated across the
turning point region where ray theory breaks down. This is
computationally fast, which is important because in practical
applications of this method thousands of rays can encounter
closely spaced turning points. We compare the modified ray
solution with a uniformly valid solution and a numerical inte-
gration of the vertical eigenfunction equation. We also findthat
including a wind curvature term in the ray analysis leads to bet-

ter agreement with a mesoscale model simulation.

The method

We examine stationary mountain waves propagating in a back-
ground that depends on the heightz only. The mean wind has
componentsU(z),V(z) in the horizontalx,y directions, respec-
tively. The mean buoyancy frequency isN(z). We work in terms
of the vertical velocityw(x,y,z) and its vertical eigenfunction
w̃(k, l ,z), wherek, l is the horizontal wavenumber vector.

The vertical eigenfunction ˜w(k, l ,z) satisfies (Shutts and Broad
1993)

w̃zz+(l2s −k2
h)w̃ = 0, (1)

wherek2
h = k2 + l2, andls is the Scorer parameter defined by

l2s = N2/Ū2−Ūzz/Ū . (2)

HereŪ(z) is the wind component in the direction of the hori-
zontal wavenumber vector(k, l).

The spatial solutionw is obtained from ˜w by the inverse Fourier
transform

w(x,y,z) = ez/2H0

∞ZZ
−∞

w̃(k, l ,z) eı(kx+ly)dkdl, (3)

whereH0 ≃ 7.5km is the density scale height.

By Fourier synthesized ray solutions, we mean the Fourier syn-
thesis (3) of the the ray solutions to (1). These ray solutions
involve phase integrals of the form exp(i

R
mdz), where the ver-

tical wavenumberm is defined by the dispersion relation

m2 = N2/Ū2−k2
h . (4)

The wind curvature term̄Uzz/Ū in (2) is ignored in the ray ap-
proximation, sinceŪ is assumed to be slowly varying over the
vertical distance ofm−1. However, the wind curvature term can
be important for waves with turning points near the tip of a wind
jet, as we show below. An anelastic correction to the dispersion
relation (4) involvingH0 was found to be unimportant in the
examples considered here.

Our notation is such thatm is postive/negative for upgo-
ing/downgoing wave groups. This is opposite to the usual nota-
tion for internal gravity waves, but it is standard for two turning-
point theories developed for other applications and applied here.

Figure 1 illustrates the problem. A wind jet produces an evanes-
cent region (m2 < 0) between the turning point heightsz1 and
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Figure 1: Wind profiles used in the present paper. Left panel:A sech2(z) wind profile. Right panel: The wind profile obtained from

radiosonde measurements and used in Eckermann et al. (2006). The waves have turning points at the have heightsz1 andz2, which for

a given background are functions of the horizontal wavenumber of the waves.

z2, surrounded by propagating regions (m2 > 0) above and be-
low. The heightsz1, z2 occur wherem2 = 0 and depend through
(4) on the horizontal wavenumbersk, l and the background strat-
ification and wind profiles. An incident wave launched from
z = 0 propagates upward toward the lower turning point at
z= z1, generating a reflected wave propagating downward be-
low z1 and a transmitted wave propagating upward abovez2.

We first derive solutions for ˜w in an unbounded region. We then
introduce a lower boundary atz = 0, representing the ground,
and account for repeated reflections between the ground and
lower turning point.

The ray solution is derived by Froman and Froman (1970) and
involves the phase integrals

q1(z) =
Z z

z1

mdz, (5)

q2(z) =

Z z

z2

mdz, (6)

Q =

Z z2

z1

|m|dz. (7)

Note that forz< z1, we have from (5) negativeq1 but positive
dq1/dz. Thus in the following ray solutions we associate±q1
with, respectively, upgoing and downgoing wave groups below
the lower turning point.

The ray solutions are

w̃t = Cm−1/2ei(q2+π/4) , (8)

w̃r = C|m|−1/2eQe−i(q1+π/4) , (9)

w̃i = Cm−1/2[e2Q +1]1/2

ei(q1+π/4+2σ) , (10)

whereC is a constant. The subscriptst, r, i refer, respectively,
to the transmitted wave (defined forz > z2), and the reflected
and incident waves (defined forz< z1). An expression forσ is
derived by Froman and Dammert (1970), given by their eq. (57)
as

σ = .5[Q∗ logQ∗−Q∗ +argΓ(.5− iQ∗)] (11)

whereQ∗ = Q/π.

The ray solution for ˜w is

w̃(z) = w̃i + w̃r z< z1 (12)

w̃(z) = w̃t z> z2 (13)

The upper boundary condition is a radiation condition, satisfied
by the form chosen for ˜wt , which represents an outgoing wave.
Between the two turning points, wherem is imaginary, we use
(Froman and Froman 1965)

w̃(z) = C|m|−1/2e−|q2| z1 < z< z2 . (14)

Uniformly valid solution

The ray solution for ˜w diverges at a turning point, wherem=
0. A uniformly valid solution that corrects the ray singular-
ity at two turning points involves Weber functions (relatedto
parabolic cylinder functions). It has the form (Kravtsov and
Orlov 1999)

w̃(z) = DA(z)E(b,ζ(z)) , (15)

whereE is the Weber function,D is a constant, and

A(z) = [(ζ2(z)−b2)/m2(z) ]1/4 , (16)

b = 2Q/π . (17)

The mappingζ(z) is defined by an integral equation that is
solved iteratively and depends on phase integrals similar to (5)-
(7). Note thatA is proportional tom−1/2, as is the ray solution.
But A remains finite at a turning point, because the two turning
points occur atζ = ±b. For further details, see Kravtsov and
Orlov (1999).

Eigenfunction approximations for a sech 2(z) wind profile

We first consider the wind profile shown in the left panel of
Figure 1, given by

U = U0 +U1sech2((z−zm)2/L2) (18)

with U0 = 10ms−1, U1 = 30ms−1, zm = 10km, andL = 3km.
The other background parameters areV = 0 andN = 0.015s−1.

Figure 2 shows the real and imaginary parts of the ray and uni-
form solutions of (1), along with a solution by numerical inte-
gration (see below). These were computed at 100 evenly spaced
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Figure 2: The real (left panel) and imaginary (right panel) parts of the solution ˜w for the wind profile (18). Vertical dotted lines indicate

the turning point locations, atz1 ≃ 8.4km andz2 ≃ 11.6km. The horizontal wavelength of the waves is about 13.8 km.The solutions

are normalized so that ˜w = −1 atz= 20km.

heights from 0 to 20 km. The ray solution diverges at both turn-
ing points (vertical dashed lines), though the computed values
remain finite because the discrete grid misses the turning points
slightly. The curve for the uniform solution shows a small notch
near the turning points, most noticeably in the right panel of the
figure. These occur because of roundoff error in the calculation
for A(z) in (16), which is the quotient of two terms that vanish
at the turning points.

The numerical solution to (1) was calculated with a Runge-
Kutta method using an initial condition given by the the trans-
mitted ray solution (8) atz= 20km. This was then integrated
downward toz= 0. The numerical solution begins to separate
slightly from the uniform solution as the integration proceeds
down into the evanescent region between the turning points.For
the real part of ˜w, the numerical solution is slightly larger in am-
plitude than the uniform solution at heights belowz1.

The modified ray solution

In practice, mountain wave forecasts involve the calculation of
w̃(k, l ,z) for tens of thousands ofk, l values. Thus we would like
to use the ray method, which is much faster than the uniform
and numerical methods. To do so, we need an efficient way to
correct the ray theory breakdown near the two turning points.

We first identify the region of ray-theory breakdown near the
turning points using the following quantity (Froman and Fro-
man 1965), which measures the slow variation of the vertical
wavenumberm:

ε =
1

|m|2
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Ray methods are asymptotically valid, i.e. their accuracy im-
proves asε → 0. At a turning pointε diverges, since neigh-
boring rays with slightly different values ofm cross each other.
This results in a divergence ofdm/dzand the other derivatives
in the above expressions.

We consider ray theory to be sufficiently accurate whereverε <
1, and we leave the ray solution as it is in those regions. In

a region whereε > 1 we replace the ray solution with linear
interpolated values across that region. Letz= r, z= sbe heights
on either side of a region whereε = 1. Our modification to the
ray solution is then given by the linear interpolation

w̃(r < z< s) → w̃(r)+(z− r)
w̃(s)− w̃(r)

s− r
. (21)

We show examples of this modification (indicated by heavy
dashed lines) in Figure 3. The two upper panels are the same
cases as the corresponding panels of Figure 2. The bottom two
panels show results for more closely spaced and more widely
spaced turning points. We approximatedε using centered dif-
ferences for the derivatives ofm2 in (20). For the upper panels,
ε > 1 at heights between 6.8 and 9.7 km, and between 10.3 and
13.1 km. The ray solution in these height ranges is replaced by
the linear interpolation in (21).

The upper right panel of Figure 3 shows that occassionally the
modified ray method is not so accurate. Hereε reaches a mini-
mum of 0.72 near the middle of the wind jet atz= 10km, and
yet the ray solution is not accurate there. We expermented with
other values ofε for determining ray theory validity, but the
value of unity consistently led to the best approximation. A
possible improvement to our procedure would be to interpolate
across the entire evanescent region whenever the two turning
points are close together, as judged by the integralQof (7) being
less than a certain value, say unity. In this exampleQ ≃ 0.64.
We may consider this possibility in future applications.

Lower boundary condition and wave transience

Mountain waves that reflect from a turning point return to the
ground where they reflect upward again. We have not yet taken
into account the contribution from these ground reflected waves.
A way to do so is outlined in the Broutman et al. (2006) and is
summarized here.

Each reflection from the ground generates a new incident wave,
with a phase shift and a change in amplitude relative to the orig-
inal incident wave. The phase shift is due to the total phase
change in propagating from the ground to the lower turning
point and then back to the ground again, including the phase
shift of −π/2 for reflection at the turning point and the phase
shift of π for reflection at the ground. The total phase shift is
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Figure 3: The modified ray solution, obtained by linear interpolation across the turning point regions and denoted by thedashed line.

Upper panels: the same case as the corresponding panels in Figure 2. Also shown are examples with closely spaced turning points

(lower left panel) and widely spaced turning points (lower right panel).



then

Φ = 2
Z z1

0
mdz+π/2. (22)

The change in amplitude is given by

R≡ |wr |/|wi | = eQ/(e2Q +1)1/2 . (23)

This reflection coefficient is the ratio of the ray amplitudesfor
the reflected and incident wave solutions of (9)-(10). As the
distance between the two turning points widens,Q increases
andRapproaches unity.

To incorporateNr reflections from the ground, we take the solu-
tions forw̃ obtained above (ray, uniform, numerical) and multi-
ply each by

S=
Nr

∑
n=0

RneınΦ . (24)

The number of ground reflectionsNr depends on the propagtion
time T from the ground to the lower turning point and back to
the ground:

T = 2
Z z1

0
c−1

g dz (25)

wherecg is the vertical group velocity. At timet, the number of
ground reflections can be approximated ast/T rounded to the
nearest integer. This approach was tested by Broutman et al.
(2006) and used by Eckermann et al. (2006).

Waves with one or no turning points.

To simulate the full spectrum of mountain waves, we also need
the solution for waves that have one or no turning points. The
solution for one turning point involves the Airy function. It is
given in the Appendix of Eckermann et al (2006) and will not
be repeated here. The solution for waves without turning points
is

w̃ = C1|m|−1/2eiq . (26)

whereq =
R z

0 mdzandC1 is a constant.

There is a better approximation than (26) for waves that just
miss having turning points. It is similar to the two-turningpoint
ray solution (8)-(10), but the turning points have complexzval-
ues. Unlike (26) it accounts for partially reflected and partially
transmitted waves. We are presently implementing that solution
and hope to report some results derived from it in the future.

Mountain waves: an idealized case

We first consider a two-dimensional example, with the wind
profile given by (18), and a constantN = 0.015s−1. The to-
pography is

h = h0/(1+x2/L2) (27)

with h0 = 100m andL = 2.5km. The linearized lower boundary
condition is applied. This equates ˜wi in (10) toh̃ atz= 0, where
h̃(k) is the Fourier transform ofh(x).

The left panel of Figure 4 shows the result obtained using the
modified ray solution. This was calculated on a grid with a
spacing of 1km inx and 100m inz. The dashed lines indicate
the turning point heights for the resonant modes (see below).

The middle panel shows the result from the Weather Research
and Forecasting (WRF) model, a mesoscale model described by

Skamarock et al. (2005). This was computed on a 480 by 301
grid with a spacing of 250m inx and 100m inz. The WRF
simulation includes a sponge layer that starts atz= 20km.

The right panel shows the result calculated the same way as
for the left panel, except that the wind curvature term has been
included in the dispersion relation. Thus (4) becomes

m2 = N2/Ū2−Ūzz/Ū −k2
h . (28)

Since we are considering a two-dimensional case,Ū = U .

Including the wind curvature term has led to a better agreement
with the WRF solution, particularly at heights in the range of
about 6−10km, where the left panel shows higher wave ampli-
tudes than the middle and right panels.

To help explain these results, we consider the resonant modes.
These have a phase changeΦ in (22) that is a multiple of 2π, so
there is perfect constructive interference between the reflected
waves. The resonant horizontal wavelengths for the wind profile
(18) are

λ ≃ 5.0, 7.2, 15.9km. (29)

The corresonding heights of the lower turning point are

z1 ≃ 3.9, 6.0, 9.2.km (30)

These heights are indicated by dashed lines in the left panelof
Figure 4, and in the middle panel to assist in comparing the
results.

The above values were calculated without the wind curvature
term. When wind curvature is included, we find only two reso-
nant modes, with

λ ≃ 5.1, 7.5,km (31)

and

z1 ≃ 3.8, 5.8.km (32)

SinceŪzz is negative near the tip of the wind jet, the wind cur-
vature term−Ūzz/Ū adds a postive contribution tom2 and pre-
vents it from vanishing forλ near 16km. Thus we lose the
resonant mode that has a turning point atz1 ≃ 9.2km and that
results in the relatively large amplitudes in the 6−10km height
range. These heights in (32) are indicated by dashed lines inthe
right panel of Figure 4.

Mountain waves: a realistic case

We present some preliminary results for mountain waves gen-
erated by the island of Jan Mayen, in the North Atlantic. This
is for the wind profile shown in right panel of Figure 1, which
has a strong wind jet centered at a height of about 10km. The
stratification profile, the topography, and other details are given
in Eckermann et al. (2006).

Three solutions forw are presented in Figure 5. The calcula-
tions are three-dimensional, but only the vertical cross sections
are shown here. The left panel is the solution based on a single
turning-point theory involving Airy functions. This is thesolu-
tion given in Eckermann et al. (2006). It reveals very littlewave
transmission above the 10km wind jet.

The right panel of Figure 5 is from our modified ray solution.
The wavefield above the wind jet is much stronger than in the
left panel, and compares fairly well in magnitude with the WRF
solution, pictured in the middle panel. However, the dominant



Figure 4: Left: modified ray solution without the wind curvature term. Middle: WRF solution. Right: modified ray solutionwith the

wind curvature term. Colorbar values are forw in ms−1. Dashed lines indicate the heights of the lower turning points for the resonant

modes, from (30) for the left and middle panels, and from (32)for the right panel. The mountain profile (27) is shown, amplified by a

factor of 4 for visibility.

Figure 5: Mountain waves generated by Jan Mayen, in verticalcross section. Left: Airy function solution accounting fora single

turning point only, as computed by Eckermann et al. (2006). Middle: WRF solution. Right panel: modified ray solution. Colorbar

values are forw in ms−1.



horizontal wavelength above the wind jet is somewhat shorter
for the modified ray solution than for the WRF simulation. We
have not yet included the effects of wind curvature in this cal-
culation, which may be the source of this discrepancy.

Comments

We have demonstrated that Fourier synthesized ray solutions
can effectively model mountain waves in the presense of two
turning points caused by a wind jet. We dealt with the break-
down of ray theory near the turning points by linearly interpo-
lating the ray solution across the turning point regions, asillus-
trated in Figure 3. We tested the accuracy of this modified ray
approach by comparing its predictions with a uniformly valid
theory and a numerical integration of the vertical eigenfunc-
tion equation, both of which require much longer computation
times.

The results can be sensitive to the effects of wind curvaturein
the dispersion relation, especially if a resonant mode has aturn-
ing point near the tip of a wind jet (see Figure 4).
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